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/'solutions of elliptic problems on polygonal domains in R

\\\\\Abstract

vy
In Part Il of this paper, the approximation theory developed in Part I

St is used to determine the piecewise polynomial approx%mability of

and polyhedra

in R. From these estimates, convergence orders for the p-version of the
finite element method applied to such problems are readily obtained. The
critical issue is the approximation of the singularities which occur at the
non-smooth parts of the domain boundaries., It is seen that the estimates of
[1IT involving the wel S Z3 are well-suited for

treating such singular functions, yielding directly the optimal approximation
degree, up to an arbitrarily small e.

Numerical results for two problems from two-dimensional linear elasticity
are also presented. The computations show that the predicted order of
convergence is achieved even for low values of p. Moreover, in contrast to
the usual h-version of the finite element method, the point at which the
p-version enters the asymptotic range does not depend on problem parameters
such as the Poisson ratio.
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1. Introauction

In this papef, the approximation theory developed in [11] for the
p-version of the finite element method is applied to elliptic problems in
polygonal and polyhedral domains. Assuming that the p-version (see e.g. [6])
is used to compute an approximate piecewise polynominal solution to some
elliptic problem, the question at issue is the rate at which the approximate
solution will converge to the true solution in the appropriate energy space as
the polynomial degree p is increased. It is well-known that if a coercivity
or "inf-sup" condition [2,10] exists for the given elliptic operator, then
this question reduces to a purely approximation-theoretic problem of the kind
treated in [11]. The purpose of the present paper is to show how the results
of (11] may be used to determine the approximability of solutions of some
model problems in the usual Sobolev spaces by piecewise polynomials satisfying
appropriate boundary and conformality conditions.

As with any approximation result, the degree of approximation for the
p-version is cetermined by the regularity of the function being approximated.
The regularity of solutions of elliptic problems on smooth domains is
classical [1,19], unfortunately few problems of practical interest fall into
this category. For elliptié prablems on non-smooth domains such as polygons
and polyhedra, one must turn to the regularity theory developed e.g. in
{12-18]). Essentially, these results show that solutions on such domains may
be decomposed into the sum of smooth functions and functions which possess
singular derivatives at the corners (and edges in R3) of the domain. It
suffices therefore to consider the approximability of these singular
functions, whose form can usually be given very explicitly. It has been
previously noted [6] that, unlike the h-version estimates, the approximation
results for such singular functions as obtained from estimates involving the

usual unweighted Sobolev spaces HS are not optimal for the p-version. As
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‘gfg will be seen in the following sections, however, the singular character of
<§k}' . these functions is well-distinguished by the weighted Sobolev spaces 23

AR introduced in [11], and optimal results are obtained by the estimates of

%ﬁ?ﬁ [11]. This is clearly due to the close relationship between the weighted

*fsi spaces zi and polynomial approximation indicated in [11].

o In Section 2 the notation and main approximation results of {1l1] are

;? ) reviewed. Section 3 addresses the approximation of the solution of a model
é-zai elliptic boundary-value problem in a polygon. This two-dimensional result has
Ry

been previously obtained in [6] by a different method not involving weighted
spaces. The advantage of the current approach lies in the fact that more
general kinds of singularities can be analyzed using the weighted spaces

Zi than with the techniques of [6]. In particular, one may allow a
continuum of singularities along part of the bouncary of the comain. Tnis

situation occurs in three-dimensional problems along edges of polyheadral

domains as described in Section 4, where some new approximation results are

A obtained. In Section 5, some numerical results are presented for a sample of
V£§Q~ problems in two-dimensional linear elasticity. These were computed by the
i research program COMET-X [7] developed by the Center for Computational

Mechanics at Washington University in St. Louis.

2. Review of the Approximation Results

X

1

ggij The following is a summary of the notation and main results of [11].
I
5&" For each positive integer n, let 1" = {x = (xl’ ceey xn): -1 <x, <1,

V“.

'nr

1 <i <n}. For each non-negative real number s such that s # % + an integer,

)

¥

A S, .Nn

b 18 2°(1) = {u: i < w}
X 2aM

f§;5 - where, if s = k an integer, then




Ot
B

e
Tpin 3

-v.,‘% '

oo

[

£

£

T RS
AL
e ted

i
4

-

L IR

.
g g% 4

"
» 5

v ¢

WO W T N W e N A R A A A TS SRR AL R R e B e I S e DAt N S

n 172
iyt -(f x + I f Ia—-E- Q - x?)k dX> ’
251 0 i=1 10 axi 1

and if s = k + B with k an integer and 0 < B <1 (B # 1/2), then

(.u 2

%™

V1]
251

+

K
s/2 du
ll—/f.\ lf l(l-t) &k (xl’ e oy Xi_l,t Xl+l, o0y Xn)
- THIxI i

_a- 22

a‘i

(xl, ceer X530 T 1+l’ cees xn)l

*

1t - 1171728 g4t gt dx,...dx, . ox.

1/2
1 i-1 "Ti+l 7 .dxn ) :

Let & be a ocomain in R" such that there exists a triangulation A of
f into open n-simplices Qi, i=1l, ..., M. Let ov, v=l, ..., N,
oenote the vertices of A. Since it is convenient to be able to refer to the
vertices of a particular simplex Sli, for i=1, ..., M let o 1 <]

i,J’
<n + 1, denote the vertices of 9. . Hence, if a vertex o’ of & is

also a vertex of Qi, then ¢’ = for some j. Let S A=

,J
{(1,j): 1 <i<M,1<j<n+1}

Consider a simplex 9 € A and one of its vertices o5 i
’

Letting €y ...y € be the vectors based at oy ; and terminating at

i,
the other n vertices of Qi, define in R™ the parallelepiped

n

i’j={stﬂ: x=°i,j+mfltmem’0<tm<l}

Clearly, 9. c 9. 1,3 for all j=1, ..., n+l. For each (i,j) € S 5 Choose an

in R™ which maps Q i3 onto 1" and o5 j onto the point
’

affine mapping T
(l' es oy l)-

i,J
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Let {nv}'\Ll be a smooth partition of unity on & such that for each v=l,
«sey N, supp n, contains the vertex o’ and supp 1, intersects only those
closed simplices ﬁi which have o, as a vertex. For any u € L,(R) and (i,j)

€ SA, define in ni,j

= . \Y

! i un, in ni where v is such that oi,j = o,

i,j '3

0 in ‘2i,jmi .
By the assumptions on n,, one observes that Uy j = U in a neighborhood
]

fo. .andu, . = ige of i ..
o] i, an “1,3 0 outside of a neighborhood G of °1,J such that 1

———

G N Qi’j/ui = ¢

For each real s >0 such that s # % + an integer, let
z5(2;08) = {u : Wl < w}
25(9;8)
where
Wt = ( I 0 T;l.uzS n )1/2 .
(g8 \4,pes, ¥ HIzaM

For each non-negative integer p, let Pp(ni), 1 <i <M, denote the
space of all polynomials on Qi of degree at most p, and let
Pp(ﬂ;A) = {u: UIQi ePp(Qi), 1 <i <M}
For all non-negative integers % and p, set

Sy ncky

Zi (8 &)

Pé’ (%) = P () N c ,

where Cg'('ﬁ) genotes the set of all functions which along with their
first % derivatives are continuous on Q. P;(Q; 6) is then the
set of all functions in Pp(Q; A) which along with their first &

derivatives are continuous across the common boundaries of adjacent simplices

4
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of & It is shown in [11] that if 0 <4 <3 then the analogous
statement holds for Z(i;4) and 2%(%;4).
Recalling that Q is the union of n-simplices Qi, let I‘k, k=1,
...y K, genote the faces of &, i.e., the (n-1)-simplices whose union is the
boundary of §.. Fix s >0 and let #* pe the largest integer strictly
s-n

less than > For each k=1, ..., K, let Dk be a subset of {0, 1,

..oy ¥}, Denoting by D the family {0 ; 1 <k <K}, define

Zi(Q;A,D) ={u e ZSL(Q;A) ¢ for k=1, ..., K,
i)-'L=Oon I, for each m € D, }
an™

and
L A

Pb(ﬂ;A,D) = {u e Pp(Q;A) : for k=1, ..., K,
i"lJ-=00n I, for each m € D, }
a®

0 m
where a—g =uand, form >1, a—:—‘ is the m" order derivative of u with
an an

respect to n, the outward pointing unit vector normal to the bouncary of f.
Letting H°(R) be the usual Sobolev space of order s on £ ang

setting Zfl(fl; 4,0) = ZS(Q;A), the main result of [11] may now

be stated:

Theorem 2.1 Let s and s' be such that s >2s' >0 and s, 2s' # i, an

2
integer. Let #* denote the largest integer strictly less than _s_;_n If u

€ Zi(ﬂ;A,D) for some integer & satisfying s -% < & < &* and for some D, then for
each non-negative integer p there exists (pp € P: (22;4,D) such that for arbitrarily
small € >0,

) -S +28' + ¢
(2.1) - g S S Cp W28 (g )



where C = C(s, s', €) is independent of u and p. Moreover, if u
. € Zi,(ﬂ;A,D) then for any integer £ > s' - 3/2 and for any
non-negative integer p there exists % € P;'(S!; A,D) such that
o (2.1) holds.

For any real s >0, define D = {0, } as above and let

H(%;0) = {u e () : for k=1, ..., K,

%=Oon I'k for each m eq(}

The following [11,Theorem 3.4] is a consequence of Theorem 2.1:

Theorem 2.2 Let s and s' be real numbers such that s >s' >0. If
. U e HS(Q;D), then for each non-negative integer p and each integer £ >

s' - 3/2 there exists g € P2(%4,D) such that for

arbitrarily small € >0,

-sS+s8' 4+ ¢
- @l <Cp Hut
Phs'(q) HS(Q)

where C = C(s,s',e) is independent of u and p.

Remarks :

1. Although boundary conditions were not explicitly included in [1l, Theorems
3.3 and 3.4], their proofs are easily modified as inaicated in [11] to obtain
Theorems 2.1 and 2.2.

2. Theorem 2.2 was previously obtained in [6] for the case s'=1 and

HS (D) = HS(R) N FX(R), s > 1.

AT S S TS D S R
NNy

A o



3. The Approximation of Scolutions of Elliptic Boundary-value Problems in

Polygonal Domains

Let & denote a polygonal domain in R2 with boundgary I'. Then T is
the union of a finite number of line segments I), 1 <& <L, which one
may assume to be labelled in consecutive order following the positive
orientation of I. Assume also that the set {1, 2, ..., L} is

. » s - U - bl
partitioned into two subsets D and N, and let 1"D = 26D 1“2 and I'N = peN T PR

For each &, 1 <% <L, let n 2 denote the outward pointing unit normal

i
2

Consider the following model problem. Given k a non-negative integer, f

to I'z, let BR. = 5 if %eD, and let B!. = 0 if ReN.

€ I-,((Q), and g, € r?‘*l’z(r,) if f%eN, find u such that

~-Au+u="~ in &
(3.1) u=20 on I'D_
a
a_‘z-gl on 1‘2, LeN

Letting H (D) = {u e K (@): u=0on T}, (3.1) is
equivalent (see e.g. [13]) to the following variational problem: Find u ¢

H:(2;D) such that

(3.2) (W *Wa+uv)dx - Z g, v drl= f v dx
L
LeN
2 I’g Q

for all v e H(%;D)

It is known [13] that (3.2) admits a unique solution u.
The present objective is to determine the approximability of the solution

v in Hl(n) by elements of Pg(ﬁ;A,D) where A is some triangulation of Q. In




A

‘ h"'

‘3;?3 order to use the results of the previous section, one must know the regularity
-5 of u. Since f e H(R), it might be expected that u e H*2(%).

i However, it is well-established that this is not true, in general, cue to

Y

5 possible singularities at the corners of Q and at points of T where a

3
q'i

! .ql:

'Etj change of boundary condition occurs. Nevertheless, under certain conditions,
L%
o

- the solution u may be decomposed into the sum of a function in Hk+2(9) and
\'.' - » s » » ]

Sk functions which possess singular derivatives at the cormers and points of
5

i§§5 changing boundary conditions. In order to give a precise statement of this

1508 ging g

»y

iR i

result, for each &, 1 < & <L, let 0, denote the common endpoint of TQ and

s .
e . (or I, and T, if %=L), and let w,, 0 < w, < 27, denote the measure of the
-J‘,.:" xﬂl‘l L l 2« 9;

A .

o interior angle of & at o). It will be assumed that if w = 7 then

A

Lkl

\ 4 either 2eD, %+1 eN or else LeN, 2+1 eD (with the obvious modification for
iﬁﬂ 4=L); i.e., if w= 7 then the boundary conditions in (3.1) change from
TRl

Z:ﬁ Dirichlet to Neumann or vice-versa at Ope For each &, 1 < & <L, let (rl,
LA
\ 62) denote polar coorainates based at Oy such that 6£=0 contains the

5oy

ggi. segment T , . Finally, for each %, 1 < & <L, and each integer m, let
S -
o N ) Bgop ~ Bg+mom

A ) ¥ ) z’m wz .
4 *.7!.'
o The following is a consequence of [13]:
1‘,.:'"
R

— : . k k+l/2

Lemma 3.1 Let k be a non-negative integer, let f ¢ H (&%), and let g,e H

- -_— } 9
%! B£+l - By - (k+l)wl
N (rl) if feN. 1If “ is not an integer for anv &, then there
A, exists w e H*2(Q) and numbers Cy p Such that
L ’
.r ’ Ag‘
I U= w+ z c, T, "™ cos(A, 6,8, )Xo 6,)

o 0. aa] oM gm0 Pa1/ X T Oy
 nle, L,m
o] .
iik? Az,m £ an integer
f \._ .
oy

'\-.,;
W
N

A Y

> My

A_ A% 8

23
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’*4:: (3.3)
'?’\
. T (A, 6,8, 1)-8,8in(A, 0,-8, ) }xs(T,,8,)
34 ) TgeosQAy OBy )-0,3in(hy 10-By 1) Ixg(T 00
; 0<A9‘ «+1
NN Al,m = an integer
\E
)
¥ . . . .
%«ég is the unique solution of (3.1), where the Xy are smooth functions equal
e to unity near o, and zero away from o,. Moreover,
o L L
.tS?
290 (3.4)  twh + Ilc, | <C (uf + I lig,l ) .
gff The importance of Lemma 3.1 lies in the fact that the piecewise
“
ﬂfty polynomial approximability of u may now be determined by investigating the
X
s approximability of each term in the right-hand side of (3.3) separately (with
» ko
e ) a slight modification) using the results of Section 2. The following lemma is
5o required:
3?‘7 equire

Lemma 3.2 Let &L be such that 1 <& <L, let n, ¢ C™(% be such

that supp Ny is contained in a neighborhood of s and let El’

£2 € CGK[O, NRJ)’ If u is any non-negative real number and if

W)

bt d _ LM

Al v(rg,0,) =t (8nry §(8,) + £(8,))
KA

ﬁéﬁs then vn, € ZS"*z'e(Q;A) for arbitrarily small € > O.

Pf: Let (r,6) denote a polar coordinate system centered at the point (1,1);
in particular, let r = [(xl-l)‘?«s(xz-l)zll/2 and let 6 be the angle
measured from the semi-axis {x: Xy <1, x5 = 1}, It suffices to

show that if b, & € c™((o, g&), then the function

vir,0) = tH(In T E(8) + £(8) , (r, 8) eI

......

YA SRR ’.. e . ._.'.‘--.>.-.--_'q' UL SR TN e e vy -
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belongs to 22‘“'2'5(12) for arbitrarily small € > O.
To this end, let X € C ([0,%)) be such that

0 for 0 <t <1l/2
x(t) =

l for 1l<t<e=

anc for each 6 >0 let xs(t) = x(-%). Setting v, = vxs(r), it follows by

Leibniz' rule that for each integer k > 2u + 2 and for i = 1,2,

Fv, 2 K 2 F My, 2
f I kGI (l-x?)kdxf_c Zfldn—:]l I_Trﬁ'l (l-xi)kdx
12 m=02  3x; j

k-1 6 1
< c( T g2ke2m j‘ 2u-2mekel-g o +j‘ r2u-k+l-edr>
8/2 8

m=0 /2
Furthermore, since
v . < C livil
) 2, - 2
L (I%) L(1%)

one obtains that for any integer k > 2u + 2,

u_5+l_.—

€
(3.6) vl 5 <
2°(1%)

Now,

f lv-v‘sl2 dx:f v(l - xs)lzdx
2 Y32

1 1
8
in p2utl-g 4o
0

<c &wee




For each t > 0, let
K(v,t) = inf (v, 1l +t v, il )
’ Vav) 4V, 1 LZ(IZ) 2 Zk(IZ)

2/

If 0 <t <1, then by choosing 6 = t K it follows from (3.6) and

(3.7) that for k >2u + 2,

K(v,t) <iv = v i +t v
*Lu? P
2p+2-¢
<Ct k
Furthermore, for t > 1,
K(v,t) < Invii 2. *
L, (1 )
Hence, for arbitrarily small € > 0,
_ 2w2-e 2e _
® K 2 dt 15
(t K(v,t)) T <€ t at
0 0
@ o 2&"_2_-5 _1
2 f K gt < =
+ livl 2 t
"2(1 )71
This implies (see e {9]) that v e (L (12) Zk(Iz))
mp -9 2\t 0 2p2-e
9
and the result follows from [1l, Theorem 2.1]. K
. . K k+l/2
Theorem 3.1 Let k be a non-negative integer, let f e H (), let 9, € H
(I‘z) if 2eN, and assume that - is not an integer for any &£.

If u is the solution of (3.1) then for each non-negative integer p there exists

N Pg(n; 4,0) such that
- min{2x ceey 2 k+l} + €
(3.8) - iy <Cp 1,1’ ’ AL’l’ Cufn
P (R H(Q)




for arbitrarily small € >0, where C = C(g,k) is independent of u and p.

Pf: Let A!,,m’ c‘,m, w, and X, De as in Lemma 3.1. For each &

and m such that 0 < x,_,m < k+l and )‘!.,m £ an integer, let

A
_ . &,m
2y m (rg,0) = r,”’ °°s“z,m°z - Bhl) Xg (rl, 6,)

For each £ and m such that 0 < A

em < k+1l ang Aﬂ. m = an integer,
) ]
gefine
. )Y
mel sin el) 2,m
(-1) wl(sin ™ if wy £ T
m+l A!. m
Cg,m(e") = (-1) W (sin 8,) ™ if wp=m 1 €N, and 2eD
A
(-l)m*l ® (-cos GL) Lym if wy = W, L&D, and g+l eN
ang set

A
L,m :

’
+ zl’m(el)} X (Tg:8,) -
Finally, let
A

~ £,m
w=Ww- i c r, ' § X
oql,m«"l L,m "L £,m AL
)‘l,m = an integer
Then
(3.9) . T+ z c, 2
£,m “L,m
0<Au,m«+l ’ '
ZA +2-€

~ k+2 l -~ Q'ym .

Moreover w € H () N H (D) and by Lemma 3.Z, 2, m €24 (5 4,D) for
1

arbitrarily small € >0. Applying Theorem 2.2 to w and Tneorem Z.l1 to the

Z, g» it follows that for each non-negative integer p tnere exists Ep
. £
ch(u;u,D) and wé »m) € Pg(ﬁ;A,D), 0 «< Al,m < k + 1, such that
12
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¥ '-' EASL A RAAS M N AT RV o V) i Wi IR IEY € WL W T W WA




iy 3y (o 3 e aee FrENN TR P M - gl . ST AETENIYR YR Nt et et et et S otgh b et TR Rt Skt et |

S
ne - ~ k-lee o~
A (3.10) iiw - g1 < Cp il and

b A3
e Pl () H*2 (@)’
ean) -2\, +€
N (!. m) L,m

3.11)  u - g™y < J | i 0 <A K+l,

- ( ) Z!L,m ‘pp Hl(ﬂ) =Cp lZ!z.,m 22A£,m+2-e(Q;A)’ £,m < ke
AL

xi where C is independent of p. Setting

%
N (3.12) ¥ =W + z c, yibm

PP gan, el WP

BN &
)
% (3.8) follows from (3.9) through (3.12) together with (3.4) and the triangle
:J'
[ '

inequality.

7;{“3,

L EEL

Remarks 1. Theorem 3.1 for the case I‘D =T, PN = @ is proven

‘ k:'?(' g

A ) in (6, Theorem 4.3]. The techniques employed there, however, do not use

{;,; weighted spaces to obtain the result; instead, the singular functions are
{f;: approximated directly.

R 2. Theorem 3.1 shows the doubled order of convergence obtained by using the
3‘@’ p-version of the finite element method instead of the h-version with

?i::f quasi-uniform refinement. Letting N denote the dimension of Pg(ﬂ; 4,D)

and letting h denote the maximum diameter of any triangle in 4, it holds that

h—2

(3.13) N~ ,
p for the p-version.

for the h-version (guasi-uniform refinement),

1t can be shown (see e.g. [4]) that functions of the form (3.5) belong to the
space H°(5) iff 1 <s <X+ 1. Letting

M= min A
0] Ql,m< k+l

£,m

and assuming that k is large (which it usually is in practice), it follows

from the standard h-version approximation theory [2,10] that the approximation

13
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error in HI(Q) for the h-version is of order h* ~ N W . As for

the p-version, Theorem 3.1 together with (3.13) yield an approximation error

of orcer p-2u+e n NTHHE

for arbitrarily small ¢ > O.

Results such as Theorem 3.1 may similarly be obtained for elliptic
operators other than that of (3.1) provided that results such as Lemma 3.1 are
available for such operators. Consider for example the biharmonic problem:

given f er(Q), k >0, find u such that

My = f in @
(3.14)
U= d/on=20 on T.

Letting HZ(Q;D) ={ue Hz(fz) tu=2a/n=0 on T}, one
seeks to approximate u in Hz(ﬂ) by elements of P‘lJ(Q;A,D) =
Hz(sz;D) N Pp(s'z;A). In [18) it is shown that the solution u of
(3.14) may be written as

A!L,m

U=Ww+ z T Q¢ m(To)Xe(Tp,6¢)
0 <Re Az’m <Q(k) l,m AL Ve

where
(1) w eH**(x0),

(ii) the Ag.m @are the solutions of the nonlinear equation
td

l)2sin2w =0,

. 2
sin (Al,m - l)wz- (Ag’m - .




(iii) the functions Qo are of the form
]
Mm,j  Bm,j
QT = I cp 0 g™ o "1
J

for some smooth functions Cn j? non-negative integers M 3 and real
] ]

numbers B j >0, and
’

(iv) X, 1is a smooth cutoff function equal to unity near o, and

vanishing away from og-
Then the following may be obtained in a manner similar to Theorem 3.1:

Theorem 3.2 Let f eHX(Q) for some non-negative integer k and let
u be the solution of (3.14). Then for each non-negative integer p there

exists ¥, ¢ Pé(Q;A,D) such that

Ny - Wp W2 < Cp~ min{ 2 l;l'r'\' Relg’m -2, k+2}+ e 5y HK(R)
b4

for arbitrarily small € >0, where C = C(g,k) is independent of wu

and p.

4, The Approximation of Solutions of Elliptic Boundary-Value Problems in

Polyhedral Domains

\
Let i denote a polyhedral domain in R3 with boundary T ano

consider the following model problem: Given f in Cciﬁ), find u such that

-Au+u="f in @,
(4.1)
u=20 onT.

Letting

e e e el New
. N
.‘P‘A‘.'-,s. wla s._L' L\.L.I. [ ,_l.ﬁ..n.'\




Hl(Q;D) = {u eHl(Q): u=0onT} ,

it is well-known that (4.1) admits a unique variational solution u e
Hl(Q;D). In order to determine the approximability of u in Hl(Q) by
elements of Pg(ﬂ;A,D) for some triangulation A of Q, the

regularity of u must again be established. By classical elliptic regularity
theory [1,19], the solution u of (4.1) is infinitely differentiable in the
interior of @ and up to the smooth faces of I'. However, in analogy with
the previous two-dimensional case, u will, in general, possess singular
derivatives at the corners and edges of Q.

Consider first the behavior of u near an edge of Q. Let Y denote an
open segment such that ¥ is contained in the interior of some edge of (.
Letting x = (xl, X2 x3) denote Cartesian coordinates in RB, assume
without loss of generality that y is contained in the positive x3-axis.

Let w denote the measure of the interior dihedral angle formed by the two
faces I) and I, of  which intersect along v. Let (r, ¢, x3)

denote cylindrical coordinates about the xj-axis such that r = (xf +

x%)]'/2 and such that ¢ = O (resp. ¢ = w) contains r (resp.

I,). Denote by G an open subset of R% such that G x y C Rand G x

Y neither contains any corners of Q nor meets any eoges of Q except for
the edge containing y. For each integer m > 0 and each integer n > 0,
let

4.2)  z (r,9) =1 sin@" ¢)

if %Il is not an integer, and let

g 2n

. I .-
(4.3) zm,n (ry9) =T (sn T 51n(%g @) + cos(%}-¢)]

1f'%?Lis an integer. The following result is contained in [16]:
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Lemma 4.1 Let f belong to c“(®). Then for any positive integer k

there exist:s‘1 h e C“(‘y', h’“z(G)) andc_ ¢ Cw(‘r') such
?
that
(4.4) us=s . z cm,n Zm,n + h
0 <— 4+ 2n < k+l
w
inGx v.

Remark If one were only to assume that f ¢ Hk(Q), Lemma 4.1 still holds

except that in this case, one may only conclude 1:hat2 h el (y, Hk+2(C)) and

kel - 2L _ op 2
c € H (v) (see [16] and the references contained therein).

myN
The assumption that f € C”(ﬁ), which usually holds in practice, has
been mage in order to help simplify the presentation.

Together with Lemma 4.1, the following enables one to apply the
approximation results of Section 2 to the solution u of (4.1) in a

neighborhooo of the eage Y.

Lemma 4.2 Let ¢, & eCQ([O, w]), let ne C(Q) be
such that supp nc G x v, and let c € Cm('?). Let v be a function

on & such that, in G x v,

C™(X;Y) is the space of all infinitely differentiable functions on X
whose values lie in Y.

LZ(X;Y) is the space of all functions h on X with values in Y such that

s, nm(x)nﬁ ax < @,




v(r,9%5) = )™ (B0 1 & (@) + £ (e)
A
; §f for some non-negative real number y. Then vn € ZS”*Z'E(Q;A,D) for

arbitrarily small € > 0.

03
N
égég Pf: Since v is smooth in the variable X3, the result follows from Lemma 3.2.

Consider next the behavior of the solution u of (4.1) in a neighborhood of a

corner of §, which may be taken to be the origin without loss of genmerality. Let

gég‘ Y denote an edge of § which has the origin as an endpoint; again assume that y
if& is contained in the positive x3—axis and that w is the measure of the interior

%? dihedral angle of & at y. Let K denote the intersection of & and a solid

fuj ) circular cone whose vertex is the origin, whose axis contains vy, and whose
é?:? half-angle is sufficiently small that K does not meet any of the edges of Q which
mm: have the origin as an endpoint except for the edge containing y. Finally, let K0
%}g denote the intersection of K and a small sphere of radius Py about the origin.
ik

s
Sy

5’) L
i

The present goal is to understand the behavior of u in Ko‘
To this end, let G denote the section of the unit sphere intersected by the

infinitely extenged cone coinciding with & in a neighborhooc of the origin, and let

D

Y

AR50, 0

vt me

GY genote the intersection of K ano the unit sphere. Oenote by O < Al <

12 < ... the eigenvalues of the Laplace-Beltrami operator on G with homogeneous

Dirichlet boundary data on 3G. Let (p,8,¢9) be the usual spherical coordinate
system in R3. Applying the previous two-dimensional results to the

Laplace-Beltrami operator on G, let E; n (8,¢) denote the singular functions
)

_32' analogous to (4.2), (4.3) where the singularity occurs at the corner 6=0 of G. The
s,

e

4 following is proved in [16]:
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Lemna 4.3 Let f pelong to C™(®) and let u pe the solution of (4.1).

Tnen for any integers k and k' satisfying O < k' < k, there exist numbers

Cm,n,i’ d; and functions fm,n’ 9 h such that, in Ky
-%—+ )‘i+%
u(p, 6,9) = z [ z Comon.i P
M 1 .l. 1 « e
o +2Nn K+ -5+ Xl+z-
(4.5)
1 1
-5+ )\i+z
+ fm,n(p m,n(e’q)) + ! b - d; o : g.(6,9) + h(8,0)
—7+\'Ai+z <«
IJ«-Z . .
where g; € (GY) and for arbitrarily small € > O,
-k +] -% + € BJ
° 253 Tmyn € L2000 RS RS

-k+j--—21-+eaj K

-—h €L
p a0 2(

The following lemma, together with Lemma 4.3, will allow the application

0,=); H< ~ "+2(GQ), 0 <j <k

of the approximation results of Section 2z to the solution u of (4.1) in Ko

Lemma 4.4 Let n € C™(G) be such that supp my C E} and let
n, € c™([0,=)) be such that supp m,c{e: 0<p<pyt

(i) If v is a function on & such that, in Kgs

-u,+B -u,+8.,-1 gl
"R TR b2V € L,((0,9; L)) ,

(4.6) p si
N
05'§I=Bl+62+83_<_\) ,

for some positive real numbers By Wy and for some positive integer v, then

vmn, € Z0 (&;4,0) for arbitrarily small € > O.

(ii) 1f v is a function on & such that, in Kg,

S I T Y R ILs S NP RD Ay o e SN e T e T T et AR CILI et e
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P e L,((0,=); L,(G))

"y 2 ? ] 2 H
ot : ﬁ
hARE 3p 3%353

05|§|=Bl+82+83_<_v R

g%, for some positive real u and some positive integer v, then v, € ZO
”E’ﬂ' (S A,D) for arbitrarily small € > O.

Pf: Assume that the Cartesian coordinate system (x;, x,, X3) has been

transformed by an affine mapping in such a way that p now represents the

distance to the point (1,1,1) and that 6 is the angle measured from the
THE ' semi-axis {x: X) =Xy =1, X5 < 1}. To prove (i), it suffices to

show that a function v in I3 satisfying (4.6) (with the new definition of

(p, 8,9) and corresponding redefinition of GQ belongs to

2 min (ul,uz) + 2-€

Z (1) for arbitrarily small e > O.

To this end, let x € C ([0,*)) be such that
0 for O <t <1/2

x(t) =
l for 1 <t<e
o)
“f{cﬂ.‘bﬁ t
i and for each 6 >0 let xs(t) = X('g)- Set v =
-,&ﬁ v Xg(P) xgp sin ©). Then, for i =1, 2, 3,
Las
s v w! Bazx (p) a%xz(p sin 6)
é <c I 9V ) 6
k —
Y iai=k 1. % 2 % |
i &y a&i E)xi i
K 4 —« |
<c 1 | 61 |
01=0 axal z
i
and
Fv, 2 K 20p-2k % 2
o= f —3 Q- Rfecc L 6 i 1Y (- x;)4ox
1° axy o =0 8/2<p<$ 8xil
3
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kK  2a-2K | 2 -2B.-28 +k+2
<C 2 601 z ,/-6 _B—a_gzv—_ﬁg p 82 63 sin 6 dpdéde
=0 1B1=0p" 7 <P<8 | 351362 5g
k  2a,-2k ! 2 2,428 -2u,+28,-2
icldql Z va%pllsinuzsze
o =0 1Bl=0q g <p<s | 3p agza¢
2y, +k-20, +2 2w -2B+2
(4.7) °*p 1 1 sin AN 8 sin 6 dpdéde
k 20,-k ! 2 -2u,+28 21 +2B,-2
<c z 61 g —-B—ﬁ—é"——s—} ™ lgin 7272 7
-2a 2ul+2 2u2+2
* (p sin @) p sin 8 sin 6 Cpabde
k 2a -k-2a +2 min( )+2
PP R Ak
o,=0
2 min(y )+2
<c s 1'¥2 .

Moreover,

f3 v - vélz dx =f3 v (1 - xG(P)XG(p sin 8)) 1% dx

1 1
5_%/. v12 dx
o sin 6<¢$
-2 2.2 2, +2 2u.+2
(4.8) <cC i p Main 270 5 M 0 *2"% sin edodedo
p sin 6<¢6

-2 -2, +2 2 min( )+2
in Wi p ulsin Y2 & (p sin 6) 2 sin 6 dpdéde
p sin 6<6

2 min(y, ,u,)+2
<C o Hl uz .

fFor t > 0, define

K(v, t) = inf (v, 1l + t liv il )
’ Va4V, 1 L2(13) 2 ZK(IB)
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for 0 <t <1 let Vi =V - Vg and Vo = Ve Then, by (4.7) and (4.8),
min(ul,p.z)+l . -k/2 + min(ul,u2)+l

K(v, t) <C(8 t 8 )

2/k

|

Choosing 6 = t° ", it follows that 1
\

\

2 min(ﬁ,uz)+2

K(v, t) <Ct K ,  0<t<l.

For 1 <t < = take Vi =V and Vo = O to obtain

K(v, t) <C Iwvii

l <t <w
L2(I

3)’

Hence,

4min (py, W, )+4
1 =26+ 1'¥2

© -1
f kv, )2 & <cf  t k at
0 t =g

+ C Ivii 3f t'ze’ldt<w
L2(I) 1

2min (ul,uz)+2
provided that 0 < 6 < " . By the definition of real interpolation

via the K-method together with [11, incsorem 2.1], it follows that for

arbitrarily small € >0,

3 k.3
v e (L,(I7), Z7(17)) ,oe (W y 1y )42-¢

K y 2

2min (u J+2-¢
=2 12 (13)

which completes the proof of (i).

The proof of (ii) is essentially the same as that of part (i) except that

one instead sets Vg = vxd(p).




Having established the regularity of the solution u of (4.1) near the
euges and corners of &, the piecewise polynomial approximability of u in
Hl(h) can now be determined. Let oy, 1 <& <L, cenote the corners
of s ana let 0 < Al,l 5_12’2 < ... denote the eigenvalues of the

Laplace-Beltrami operator on G, with homogeneous Dirichlet boundary

L
conditions on acz where Gl is the portion of the unit sphere

subtended by the infinite cone which coincides with @ in a neighborhood of
Og- Let Yj’ 1l <j <J, denote the edges of Q and let “ﬁ

denote the measure of the interior dihedral angle of Q at Y The

following is the main result of this section.

Theorem 4.1 Let f belong to C(%). If u is the solution of (4.1) then

for each non-negative integer p there exists wp € Pg(Q;A,D)
such that

-24 + €
Hu - il < C(u, €)p
Pl (o)

for arbitrarily small € > O where

- - »o_1,] 1
(4.9) M= lT;:L o y -5+ kl,z + 7 ‘
159

and C(u, €) is independent of p.

Pf: By employing an appropriate partition of unity, the approximability of u
in Q may be determined by separately considering the approximability of u
near the edges of &, near the corners of {, ang in the interior of Q.

Since u is infinitely differentiable in the interior of , Theorem 2.2 may

be applied with any value of s yielding an arbitrarily high degree of
approximation there. Near an edge Yj’ Lemna 4.2 and Theorem 2.2 (with an

arbitrarily large value of s) may be applied to the terms Z0n and h of

]
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(4.4) respectively; this together with Theorem 2.1 yields an approximation

degree of 2n _ € near v;.

ws i Near a corner % and an edge Yj with o, as an

endpoint, one applies Lemma 4.4 to each term of (4.5) with k' = [k], k
2

arbitrarily large, and Hys My MWy V chosen as follows:

1.

Theorem 2.1 then yields an approximation degree of 2emin

+

sl

i,

% A

For the term p 27N e z take ul=—%—+ Ay £+%,
*

b, = %g-+ 2n, and v arbitrary in (i);

For the term fh,nzm,n’ take y) = k, W = ——-+ 2n, and v = k' in (i);
1 """‘j J
-3 + A;

For the term p

i P .[_ I
gl, take u = -5+ Ai,l + g

For the term h, take p =k and v = k' in (ii).

and v = k + 2 in (ii);

for u near o, and Yj' The proof is completed by adding together the

various approximating piecewise polynomials obtained in this manner and

applying the triangle inequality.

T 1 f
T Tt >‘12,+
J H

In the two-dimensional result Theorem 3.1, the degree of approximation is

dependent solely upon the measures w. of the interior angles at the

J

corners of the domain and upon the boundary conditions; since these are always

known, the approximability of the sciution of (3.1) is readily computed in all

cases. While the effect of singularities along the edges of a polygonal

gomain is similarly expressed in terms of the dihedral angle measures w,

J

in Theorem 4.1, the presence of the Laplace-Beltrami eigenvalues in (4.9)

makes the determination of the approximation degree more gifficult in the

three-aimensional case since the relationship between these eigenvalues and

known quantities in the problem is not clear. The determination of the

smallest (or fundamental) eigenvalue A of the Laplace-Beltrami operator

on various domains has been considered by a number of authors (see e.g. {8],

24
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(20],[27]). For some configurations, Al can be obtained analytically,

however, in general one must resort to numerical techniques. Figure 4.1 below
depicts a solid & containing a notch and rectangular crack. Assuming that
(4.1) is posed on £, Table 4.1 lists the values of A} corresponding to

each of the corners of § together with the method used to compute Al and

the quantity - %-+,/A1 + %-. Considering Table 4.1 together

with (4.9), it is interesting to note that the cormers of type A, B, or C, the
degree of approximation is not affected by the "cornmer singularities" since
these are weaker than the singularities along the edges converging at such

corners. On the other hand, for corners of type D or €, the corner

singularities are dominant.
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3‘$ Figure 4.1: Solid with notch and rectangular crack.
N
_‘Q"-
‘ c . 1 1
5! orner Al Method of Computing Al -5+ Al + 3
WA
o
N7 A 12.000 Analytical [27] 3.000
AR
. B 1.667 Analytical [8] 0.884
%
:ii c 1.500 Analytical [8] 0.823
& D 0.453 Numerical (8] 0.338
E 0.396 Numerical [27] 0.304
L

Table 4.1




:’ 2 ‘

PP QP AP A

'l Cht ¥
ey

'r‘:"

o g
A

o,

.............................

S. Numerical Results

The relevance of any asymptotic error analysis such as the one presented
here depends of course on the ability of the underlying method to achieve the
predictec asymptotic order within practical computational limits. Since these
issues are difficult to resolve analytically, one must rely on numerical
experiments to determine whether it is possible to see the predicted
asymptotic behavior of the error without using an unreasonaole number of
degrees of freedom. Such experiments also provioce useful information about
the level of accuracy that can be expected from a given amount of
computational effort. In this section, the p-version of the finite element
method is applied to two model problems from two-dimensional linear elasticity
using the research program COMET-X developed at the Center for Computational
Mechanics at Washington University in St. Louis [7]. while the computations
do agree with the asymptotic orders predicted by the above approximation
theory, the main conclusion to be orawn from these results is that for
problems of practical interest, the p-version does in fact enter the
asymptotic range for low values of p. Moreover, it is seen that the order of
convergence is completely determined by point singularities in the solutions,
and that, unlike the h-version, the point at which the p-version enters the
asymptotic range is virtually unaffected by the Poisson ratio.

In order to link the following computations with the approximation theory
of the previous sections, a number of preliminary remarks must be made.

(1) The approximation results of [1l1] were developec only for scalar
problems. However, there are no gifficulties in generalizing these
results to the approximation of vector-valued functions (such as the

two-dimensional displacement fields treated below) by vectors of

piecewise polynomials in the




e (ii)

(iii)

AL AEAL QAL Sl L AATNLAR AL ALARNS)

Sobolev product spaces S = nw.

Along with a table of displacements ang stresses, COMET-X calculates

the strain energy
_ T
J(gp) = 1/2 Jh [Qgp] B[Qgp]dn

of the computed solution gp

and B is an elasticity matrix which depends on the elasticity

where D 1is a differential operator

modulus E, the Poisson ratio v, and the type of two-dimensional !
problem being considered, i.e. either plane strain or plane stress

(for a more detailed description of the matrices D and B, the

reader is referred to [28]). In terms of J, one defines the energy
norm

Nel) I( -)1/2

Lot xed

which is equivalent to the usual ™ Sobolev norm on
the space of admissible displacements with rigid body motions
factored out. Since the error in the energy norm corresponds to a
least squares error in the stresses, it is generally desired in
engineering applications to achieve 5 to 10 percent relative
error in this norm. This, of course, corresponds toa .25 to 1
percent relative error in energy.

In two dimensions, (p+1)(p+2)/2 degrees of freedom are required to
uniquely specify a polynomial of degree p. Since the p-version
assumes a fixed mesh, it follows that the gimension N of the finite
element subspaces grows asymptotically like p2 as p + = This

implies that if the theory of the previous sections preaicts an error

LIPS S I R I N N - DI IR ) -
: T T N N N A S N




estimate of the form

8 AR
».
[

»

o /

-a
kS where u is the exact solution, then the corresponding estimate of
the error in energy with respect to the number of degrees of freedom

is given by

My-u) < CN(p)~%.

i
3¢
E;é Due to a well-known orthogonality property of the error u - Ygs
a this is the same as
Fes
%
X 1 | -3 < o)™ .
ki (5.1) J() (gb) I < CN(p)
%

Consider an edge-cracked square panel as depicted in Figure 5.1. 1In

order to have an exact energy with which to compare energies computed by

PR

COMET-X, let it be assumed that the tractions o., i =1, . . .,5 are

l,
such that if u is the restriction to the panel of the exact solution (as

Lo e
o

-

S AN e 8

constructed e.g. in [21,sec. 120]) for an infinite cracked panel, then u

Sy

&

solves the finite problem of Figure 5.1. Near the crack tip, u is of the

?:5 form rl/zgﬁe) where (r,0) are polar coordinates at the tip of the

b

,;% crack and ¢ is a smooth vector function. Using the formula for u , one
- computes J(u) = 42.16.
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Figure 5.1: An edge-cracked panel.
Elasticity modulus E = 1.0, Poisson
ratio v = 0.3, Traction o as
specified in the text, Plane strain.
ﬁ- A
Mesh # 1 Mesh i# 2

Figure 5.2: Two meshes for the
edge-cracked panel of Figure 5.1.
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f¢:ﬁ3 ' Applying the p-version to this problem, one subdivides the panel in some
:%Eg convenient manner. Two possible meshes are shown in Figure 5.2. It should be
:*s" noted here that although the approximation theory presented in [11] has

EELS assumed triangular subdivisions this is not essential, and the results

1ﬁﬁ§ presented are equally valid for quadrilateral subdivisions such as in Figure
b 5.2. By the results of section 3, one obtains that, neglecting €, for each
,:S? polynomial degree p, the p-version finite element solution gp satisfies
& .

) hu - u, IHHl < Cp

.Eii where C is independent of p. Hence the error in energy is expected to

?:"‘ decrease linearly with respect to the number of degrees of freedom.

§§§ Figure 5.3 shows the COMET-X results for this problem. One observes that
\ éj the predicted linear convergence is achieved and that the asymptotic range is
. entered for p as low as 4 for either mesh #1 or mesh #2. This entry into
:Er: the asymptotic range therefore occurs when the relative energy norm error is
fE;S about 27 percent and 14 percent for mesh #1 and mesh #2, respectively.

) The superiority of mesh #2 over mesh #1 is clearly due to the fact that, given
»*’ﬁ a fixed number of degrees of freedom, mesh #2 allows more degrees of freedom
;§§g to participate in the resolution of the singularity at the crack tip than does
:;zi mesh #1. Note that for mesh #2 a relative error in energy of less than one
o percent, i.e. a relative energy norm error of less than 10 percent, is
;?E? ' achieved with p = 6, which corresponds to 482 degrees of freedom.

::7: Furthermore, if the error curve for mesh #2 is linearly extended, one finds
;ééz that a 5 percent relative energy norm error is achievable by using less
,f?% than 2,000 degrees of freedom. A problem of this size could be handled by &

large mainframe.
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Figure 5.3: COMET-X results for
the edge-cracked panel of Figure 5.1.

Consider next the edge-cracked square panel in Figure 5.4 where the lower
side of the crack is held fixed and part of the upper edge of the panel is
subjected to a uniform traction as shown. Although there does not exist an
analytical solution to this problem, it can be rigorously demonstrated that
near the crack tip, the displacement field u is of the form r°§ge)
where (r,6) are polar coordinates based at the crack tip, ¢ is a
smooth vector function, and a = 1/4. Milder singularities of a similar
form exist at the other corners of the panel. By the approximation theory of
section 3, it holds that, neglecting €, for each polynomial degree p, the

p-version finite element solution gp satisfies
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"!.‘3#;‘h1 < Cp

where C 1is independent of p. A convergence order of 1/2 with respect to
the number of degrees of freedom is therefore expected.

Since the exact energy is unknown for this problem, some other means were
required to obtain a reasonable estimate of this value. For this purpose, the
self-adaptive h-version code FEARS (Finite Element Adaptive Research Solver)
developed at the University of Maryland [5] was used. Since FEARS provides an
aposteriori estimate of the error which may be employed to obtain a prediction
of the exact energy, this procedure was used to obtain the values J(u) = 1.57

for v=.3 and J(u) = 1.23 for v = .49.

it

l ] 1
I~ 1

Figure 5.4: An edge-cracked panel
with constrained crack. Elasticity modulus
€ = 1.0, Poisson ratio v = 0.3 or 0.49,
Traction o = 1., Plane strain.
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Figure 5.5 contains the COMET-X and FEARS results for this problem using
Poisson ratios of v = .3 and v = .49. The COMET-X triangulation of the
panel is shown in the inset. Since FEARS acaptively selected a number of
meshes to obtain the results of Figure 5.5, these are not shown.

One observes that the COMET-X results are quite similar for v = .3
and Vv = .49. As for FEARS, the results for v = .49 are somewhat worse
than those for v = .3, although the fact that an asymptotic rate is even
observed is rather significant since non-adaptive h-version codes are known to
perform poorly for values of v near the incompressibility limit 1/2. The
invariance of the p-version with respect to the Poisson ratio v has been
previously observed by other investigators and is rigorously analyzed in [26].

The convergence order for COMET-X is 1/2, as predicted, whereas the
convergence order for FEARS is 1, which is expected due to the fact that the
adaptive procedure eliminates the effect of the singularity on the order of
convergence leaving only a dependence on the polynomial degree (=1). For v
= .3, the COMET-X error is less than that of FEARS up to about 350 degrees
of freedom, and for v = .49 the COMET-X error is less than the FEARS error
up to about 2500 degrees of freedom. These cross-over points correspond to
a relative energy error of about 9.5 percent and 3.7 percent,
respectively. Thus, in very low accuracy ranges, the COMET-X results are
somewhat better especially for the Poisson ratio v = .49. On the other
hand, in the higher accuracy ranges FEARS achieves a lower error than
COMET-X. 1In fact, by linearly extending the error curves of Figure 5.4, one
easily checks that in order to obtain results which have a relative error of
10 percent in the energy norm, if v = .3 then COMET-X would require
about 35,000 degrees of freedom as opposed to 3,000 for FEARS., If v =

.49 then COMET-X would require about 25,000 degrees of freedom to about
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Figure 5.5: COMET-X and FEARS results
for the edge-cracked panel of Figure 5.4.
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7,000 for FEARS. Both of the latter numbers of degrees of freedom for
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COMET-X must be regarded as being outside practical computational limits.

LA
%)

Tl

i In summary, although the above numerical results are in no way

o exhaustive, they do suggest the following:

% (i) The order of convergence of the p-version agrees with that predicted by
%h the approximation theory. Moreover, this order of convergence is completely

controlled by a principal singularity occurring at a point(s) on the boundary.




----------------

(i1) The asymptotic range is achieved for low values of p. Furthermore, the
asymptotic range has generally been entered by the time the relative error in
the energy norm has reached 10 to 30 percent.
(1ii) The p-version is not sensitive to changes in the Poisson ratio v,
even when Vv 1is close to the incompressibility limit.
(iv) If the dominant singularity is of the form r® with « >1/2
then it is possible to achieve a relative error in the energy norm of 5
percent without exceeding practical computational limits. If, however, «
<1l/2, say e.g. a = 1/4 as in the second example, then it may not be
possible to obtain a relative energy norm error of less than 20 percent
without using an excessive number of degrees of freedom. For problems with
such strong singularities, it seems clear that an adaptive p-version or a
combination of h- and p-versions [3] will be necessary to obtain the level
of accuracy required for many problems.

Of course, the above considerations have avoided other aspects which
figure significantly in the actual cost of finite element analysis. These
include the sparsity of the resulting matrices, the complexity of the input

data, issues of data structure and data management, etc. Questions such as

these are discussed in [6] and [22-24].
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